Morphosis on urban planning
12 case studies:

1. New City Park, 1999, p. 76
2. World Trade Center, 2002, p. 112
7. College Avenue Master Plan, 2006, p. 252
PREFACE

Architecture and urban planning have changed dramatically in the past few decades, not only as separate disciplines and practices but even more so in their relationship to each other. Social and political changes such as globalization and the persistence of capitalism as the dominant ideology of human exchange, under both private and state control, have rendered traditional conceptions of design obsolete. The idea of urban planning as a means of controlling the growth of cities based on the prediction of future developments is increasingly ineffective simply because future developments cannot, in the present volatile societal dynamics, be accurately predicted. Also, the idea that architecture is defined as single buildings—of whatever size—that can be plugged into a comprehensible, planned urban matrix is no longer adequate to address the needs of people adapting to a highly mobile and ever-changing urban society. The complex interplay of human and natural forces shaping cities today and into the future demands that architecture give form to urban forces active beyond traditional building and property lines, and also that large-scale planning assume more flexible and adaptive spatial structures that are capable of accommodating the unpredictable, which is traditionally associated with architecture. If we are to adapt to these historically unprecedented changes in thinking and practice, new design concepts and methods must be created.
COMBINATORY URBANISM:
THE COMPLEX BEHAVIOR OF
COLLECTIVE FORM

THOM MAYNE

PART II: CURBING THE PREVAILING PARADIGM

COMPLEX SPATIAL SYSTEMS NECESSITATE MORE DYNAMIC STRATEGIES

The contemporary urban environment is composed and recomposed by each individual every day around literal and virtual itineraries, and not in relation to a fixed arrangement of places. —ALBERT POPE 01

Never static, the contemporary city is dynamic, unstable, and increasingly difficult to trace as a linear process. While cities have traditionally provided stable and hierarchical spatial organizations appropriate to the once relatively uniform nature of social composition and concentrated political power, the contemporary city has liquefied into a dispersed urbane—a constellation of polynucleated attractors, or downtowns, in which architecture is but one more network with infrastructure as its vector of mobility. [FIG. 02] Mirroring biological evolution, which produces increasingly complex life forms over time, the city is a field

of permanent genesis; the constant flux of its systems is the means by which its social structure evolves with ever-greater complexity. Systems never get simpler.\(^2\)

Our time suffers from an inability to organize, much less exploit, the possibilities that it has itself produced. While we have relied principally on the quantitative and controlled frameworks of physics and geometry to define and manage the seemingly incomprehensible,\(^3\) the qualitative and approximate world of biology is now emerging as a more useful model of both scientific and metaphysical explanation. Developments in life sciences, ecology, mathematics, systems theory, and computation have, over the last several decades, effected a paradigm shift\(^4\) in how we conceive of organizational processes. In keeping with these new conceptual frameworks, urban formation is now understood as an accumulation of spontaneous, nonequivalent elements that overlap and fragment into integrated networks along with finance, migration, communication, and resources, all of which evolve and mutate at precarious whim. If these systems do cohere, it is in fleeting concretizations of behavior which, as each of the million microdecisions of their constituents sway, quickly shift in response to the amplification that their collective construction necessarily introduces into the urban topography.\(^5\)

While we more comfortably allow biological models (avian migration, ant colonies, etc.) to influence our perception of urban constructs, eventually we must translate patterns of human behavior into urban systems and spaces. The practice of architecture, which has traditionally been aligned with permanence and stability, must change to accommodate and take advantage of the rapid changes and increased complexities of contemporary reality.

The true territory for innovation in urban architecture, then, is not in the production of platonic solids, but rather in the design of operational strategies that deal with the multiple and overlapping forces of a highly complex and entirely uncertain "collective form."\(^6\) Combinatorial urbanism offers an alternative method of urban production that designs flexible frameworks of relational systems within which activities, events, and programs can organically play themselves out. As such, combinatorial urbanism embraces the premise of continuous process over static form and, in doing so, presents fresh ways to activate the city.

The Standardization of Urban Processes Risks

The Standardization of the Collective

If the sameness of use is shown candidly for what it is—sameness—it looks monotonous. Superficially, this monotony might be thought of as a sort of order, however dull. But esthetically, it unfortunately also carries with it a deep disorder: the disorder of conveying no direction.—Jane Jacobs\(^7\)
As we move from an economy dominated by technologies of production to an economy dominated by technologies of reproduction, the differences between things seem less significant than the potential sameness of images. —Stan Allen

In Chaos: Making a New Science, James Gleick suggests that conditions that look chaotic actually harbor hidden ordering principles. In fact, the most important revelation of chaos studies is not that order appears out of chaos, but that some systems that appear chaotic are really just complex. Yet despite such advances in the understanding of complexity in general and an ever-sharper understanding that surface order does not necessarily reveal the existence of the deep systemic order that forms complex organisms, singular systems of organization continue to prevail. The result in the context of urbanism is a homogeneity of interchangeable spaces. Most urban architecture today—in particular, new urbanism—dangerously accepts Cartesian planning as the default means—as the only means—of demarcating land and organizing citizens. This overreliance on a gridiron infrastructure that negates contextual distinctions such as topography and cultural differentiation has proven largely ineffective at producing new and intricate places of urban value. When such spaces do occur successfully, they seem to happen almost in spite of the urban architect, who fervently attempts to organize people in a curatorial approach that compartmentalizes human activity into separate cases, labeled by time, place, language, genre and academic discipline. Such channels of plan making and social intervention—acts of a curatorial urbanism—cannot contend with an increasingly interconnected and diverse world.

Opting for speed and efficiency overall, reductive, top-down, and two-dimensional methods of planning passively serve the status quo and engender generic, atomized, and static spaces. This kind of urban standardization risks standardizing its citizens, an outcome that we must actively resist. When spaces and citizens are divided according to predetermined classifications, they become atomized particles that respond only to themselves and are left to negotiate a world without the connective tissue that weaves individual buildings into a collective. Unable to foster social cooperation or generate an engaged public sphere, the individual then withdraws inward, into the privatized place of self.

FIGURE 9: THE GENERIC SUBURB VS. THE GENERIC CITY

11. "Each person, withdrawn into himself, behaves as though he is a stranger to the destiny of all the others. His children and his good friends constitute for him the whole of the human species. As for his transactions with fellow citizens, he may mix among them, but he sees them not; he touches them, but does not feel them; he hears only in himself and for himself alone. Thus each of these men remains in his own circle of family, where no longer remains a sense of society." Alexis de Tocqueville, Democracy in America (1835–40), cited in Richard Sennett, The Public Realm, ed. Gary Bridge and Sophie Watson (Malden, Mass.: Blackwell, 2002), 209.

FIGURE 10: SUBURBAN DEVELOPMENT IN GIRLS TOWN, NEW YORK, UNDER CONSTRUCTION, 1969.
changing needs over time: shifts in funding streams (local, city, private), student body composition, and unforeseeable evolutions in academia. (FIG. 28)

Our work moves away from stable alignments toward open-ended affiliations characterized by their fractured natures and multiple futures. It is this part of the accretive space-making process that allows the observer to anticipate the next intervention. The end of one work marks the beginning of the next. This notion of permanent genesis as a new constant carries with it the possibility for the very nature of urban planning to evolve. As Rupert Sheldrake asks, "How can we rule out the possibility that the laws of nature evolve?" If we accept that the very models on which urbanism is organized are vulnerable to change, then we understand that conventional tools of planning will eventually lose their primacy. As this happens, all is up for renegotiation.

THOM MAYNE’S INFORMATION LANDSCAPES

STAN ALLEN

Thom Mayne is well known as a maker of intricate architectural artifacts. He belongs to a generation of architects whose work has increased in scale over time: from houses to institutional buildings and now to fragments of cities. This book documents a series of urban projects completed over a ten-year period, exposing a continuous thread of design research beyond the scale of individual buildings. It suggests that when scaled up, architecture—like any other complex assemblage—undergoes a change of state. It needs new rules and new techniques.

Mayne approaches the problem of urbanism as an architect (rather than as a sociologist, urban designer, or planner), confident that the city is a problem of form and design but also fully aware that urbanism requires a different set of design tools—new concepts adequate to the complexity and indeterminacy of the city itself. In this work on the urban scale, Mayne has found a close fit between his own tendency toward complex form making and a series of problems that require intricate solutions.

The book is characterized in the first instance by its clear didactic structure. Diagrams and concepts tell the story of each project, unfolding in sequence, with parallel narratives of text and image. Complex sites and programs are broken down into constituent parts and then reassembled.
NEW NEW ORLEANS URBAN REDEVELOPMENT

LOCATION
New Orleans, LA [USA]

YEAR
2007

DATA

AREA OF SITE
existing land: 52,300 acres (20 miles)
existing water: 3,000 acres (1.2 miles)
existing wetlands: 2,160 acres (0.4 miles)

PROGRAM
prepared urban area: 10% (44.5 miles)
prepared water: 4% (1.3 miles)
prepared wetlands: 16% (23 miles)

TYPE
macro proposal for post-Katrina New Orleans that returns low-lying city areas to nature while conserving and densifying the urban high ground
In the aftermath of 2005's Hurricane Katrina, we searched for an approach to rebuilding New Orleans, all the while confronting the reality that areas of the city sit at or below sea level.

Until the 1890s, New Orleans was an estuary. As land developed, it was in order of its elevation from high to low. Not until the early 1960s were the lowest-lying areas of marsh and wetlands drained to accommodate housing. This type of development, coupled with the reality of rising water levels and a sinking land base, presents a serious threat, both socially and technically, not just for New Orleans but also for coastal cities around the world where man-made defenses must withstand nature's forces in order to preserve unstable communities on inhospitable sites. These broader environmental implications require radical solutions.

The challenge for this project was immediately apparent: how do we occupy the land of the Lower Ninth Ward given its ecological condition? We developed a new urban strategy and architectural prototype to address these issues. At the micro scale, we wanted to maintain the street culture of New Orleans—the interaction among residents that had traditionally taken place at the stoop level. At the macro scale, we wanted a house that would respond to changes in its surrounding landscape by engineering it to break from the city grid and switch to emergency mode, at which time it becomes completely self-sufficient. The result is a highly performative, one-thousand-square-foot house that is technically innovative in terms of its safety factor—its ability to float—as well as its solar performance and its ability to collect water. The FLOAT house is prefabricated and as a result is socially accessible and cost-efficient. It is high quality and low cost, and it can be mass produced. In addition, the FLOAT house can detach from the city's infrastructure to exist "off the grid" for up to twenty-one days.

We believe that this new way of occupying the terrain between land and water will reposition coastal cities like New Orleans to be at home on the edge.
HOW DO YOU CREATE A HOUSE AT SEA LEVEL

NEW ORLEANS IS SINKING THREE FEET PER CENTURY. SEA LEVELS MAY RISE THREE FEET THIS CENTURY DUE TO GLOBAL WARMING.

The city's land area could disappear by six feet or more this century.

WETLAND LOSS OF SOUTHEAST LOUISIANA IN ACRES

- DAILY 45.7 ACRES
- WEEKLY 320 ACRES
- MONTHLY 1,280 ACRES

NEW ORLEANS HAS FEW BARRIER ISLANDS, BUT NEW ORLEANS IN PARTICULAR HAS A GENERALLY SMOOTH CULPE OF MEXICO BOTTOM AND LACK OF COASTAL IRREGULARITIES. THIS, COMBINED WITH THE EROSION AND SINKING OF LAND AND THE INCREASED WATER LEVELS OF THE MISSISSIPPI RIVER, CREATES AN IDEAL SCENARIO FOR MAXIMUM WAVE DAMAGE AND FLOODING THROUGHOUT THE CITY.\(^1\)

WHEN LAND IS SINKING, SEA LEVELS ARE RISING... AND A HURRICANE HITS EVERY 2.8 YEARS?

New Orleans: an "inevitable city on an impossible site."\(^2\)

01. By the end of this century the seas may be three feet (one meter) higher than they are today (John Roach, "Global Warming Is Rapidly Raising Sea Levels," Stadium Show, National Geographic News, March 20, 2006, http://www.nationalgeographic.com/news/2006/03/060327global_warming.html). After all the reclamation efforts, all the shore hardening, we get six inches. Six inches. After two years and more than a billion dollars spent by the Army Corps of Engineers to rebuild New Orleans' hurricane protection system, that is how much the water level is likely to be raised if a big 1-in-100 year flood hits. (John Schwartz, "Fate of New Orleans Is Built on a City Still at Risk," New York Times, August 17, 2007.)

03. "Parts of New Orleans have been sinking much faster than previously thought.... Some low-lying areas are subsiding by more than one inch (3.14 cm) a year. " New Orleans "Sinking Even Faster," BBC News, June 1, 2006, http://news.bbc.co.uk/2/hi/americas/5015728.stm.
NEW ORLEANS IS A SINKING CITY

By 2050 an additional 12 percent of the city's urban area could sit at or below sea level.

THE VERY IDEA THAT THERE IS A ‘FUTURE’ FOR NEW ORLEANS IS HYDROLOGICALLY QUESTIONABLE.

It must be accepted, with a sense of moral sobriety, that the future of New Orleans may not include New Orleans, as we currently know it.

By 2050 New Orleans will sink thirty inches.

The development and degradation of wetlands in southeast Louisiana.
IN 2005 HURRICANE KATRINA HIT...FORCING THE CITY

The scale of the devastation wrought by Hurricane Katrina measured in miles and encompassed enough land area to blanket Great Britain.

TO CONFRONT ITS ECOLOGICAL REALITIES

Hurricane Katrina was the most catastrophic natural disaster ever to take place in the United States. Extensive flooding was intensified by breached levees and a sinking land base.

- 80 percent of New Orleans was covered in water.
- 85 percent of the city's population was evacuated.
- 62 percent of its housing stock was damaged or destroyed.

While Lakeview, Gentilly, and New Orleans East were most vulnerable among the low-lying neighborhoods (their elevations dip as far as five to eleven feet below sea level), the Lower Ninth Ward also fell prey to the city's inadequate flood-control system. It was the historic part of the city, built along the natural levees and ridges on higher ground, that escaped the catastrophic failure of New Orleans's man-made defenses.
A RESPONSIVE PROPOSAL: THE FLOAT HOUSE

THE CONCEPT FOR THE HOUSE IS TWO FOLD:

1. To design a foundation that enables the house to function independently of the basic infrastructure and public services, which have yet to be adequately repaired in the Lower Ninth Ward and which are likely to fail again.

2. To construct a new house that rests on that foundation but is wholly integrated with the natural environment, respectful of New Orleans vernacular, and enriched with sustainable technologies.

An internal mechanism allows the structure to rise up to twelve feet in times of flooding and to exist completely off the grid for up to twenty-one days.

Due to the high probability that New Orleans will flood again, the city has mandated that new construction be built five to eight feet above grade to be eligible for flood insurance. We responded to these regulations without forcing residents to live on stilts.

The first of seven recommendations in an editorial by three of the nation's leading environmental scientists was that areas below sea level should be "replaced with coastal wetlands...or with buildings that are adapted to occasional flooding (i.e., on pilings or floats)."
CHASSIS AND SHELL: A HOUSE OF PARTS

THE HOUSE: The shotgun house, predominant throughout New Orleans, can be broken down into two primary components: the house itself, where the residents live, and the foundation on which the house sits. The vibrant culture of New Orleans and the Ninth Ward district is reflected in the unique and often colorful houses that the residents have always had a major hand in designing for themselves. To enable the residents of the Lower Ninth Ward to once again craft their culture, we have reinvented the foundation on which they can build.

We focused on the performance of the house, creating a prototype with potential global outreach.11 We fabricated an armature, much like the chassis of a car, to house all the necessary components of a self-sufficient house, to which the shell, gallery, and roof attach.

THE CHASSIS: The foundation of the house must be simultaneously specific and forgiving, like the chassis of a car. The self-supporting structure hosts all the essential mechanical and technological equipment to provide the house with power, water, and fresh air. It is engineered out of expanded polystyrene foam, which is encased in glass fiber-reinforced concrete, resulting in a strong, resilient foundation able to float with the rising floodwater, thus protecting the house from future water and weather threats.12
REVERSE-ENGINEERING AREAS

While the FLOAT house accommodates areas prone to flooding, there is a threshold beyond which even a floating house is not a sensible solution. The New New Orleans Urban Redevelopment proposal articulates a multifaceted strategy that returns New Orleans’s most devastated lowlands from residential enclaves back to their natural state of marshland, while intensifying density in the elevated urban areas to provide needed housing to the residents of Orleans Parish.

Using the contemporary conditions of New Orleans to inform the city’s transformation to 2050, the proposal reclaims the areas at highest risk of flooding; these low-lying areas are used to protect the city from floodwaters and storm surges by returning them to wetlands and allowing water to build up land through ebb and flow. The city’s vacant properties are used to create higher density on higher ground, while the blighted and abandoned properties in the low-lying areas are returned to nature through the reclamation of urban wetlands and parklands. This population shift ameliorates the current trend of resettlement in New Orleans, as the population that once lived in the low-lying sections moves to higher and safer ground.

Reverse-engineering the conventional one-way rural-to-urban development closes the loop in a socially responsible and cost-effective manner with regional effects (biological, environmental, geologic, etc.).

By our estimates, it would cost $23.7 billion for New Orleans to shrink to three-quarters of its size and to intensify, compared with the estimated $39 billion it will cost to reconstruct the flood-control systems.
New Orleans, as we define it, comprises eighty square miles of urban space, five square miles of water, and four square miles of wetlands—an eighty-nine-square-mile area on which all further data are based.

According to the city, New Orleans is officially an area defined as 55 percent land and 45 percent water. Various and multiple denominators can actually be used to describe Orleans Parish, but these are the figures on which we base all subsequent calculations.

A THREE-PHASE PROPOSAL FOR FLEXIBLE URBANISM

What if the populations from the parish's most devastated lowlands shift to higher, more secure ground while elevated urban areas densify? A three-phase proposal:

PHASE 1: VACATING THE LOW(ER) GROUND
- Rapid deployment of the floating house prototype throughout the lower Ninth Ward, in the Eastern Wetlands Areas, and in all high-risk areas as needed.
- Restore properties in nonflooded neighborhoods that were blighted or abandoned before Katrina.

PHASE 2: VACATING THE LOW(ER) GROUND
- Encourage depopulation of the most dangerous and high-risk development areas, free FEMA flood zones, through buyout programs that identify damaged and high-risk properties and offer financial incentives to residents occupying these properties.
- Initiate wetlands restoration.
- Preserve all historically and culturally significant assets.

PHASE 3: DENSIFYING THE HIGH GROUND
- Continue to encourage depopulation of all high-risk areas.
- Continue to conserve significant historic and cultural assets such as the St. Bernard Area, Gentilly Terrace, and the lower Ninth Ward.
- Evaluate the region's important historical and cultural assets in collaboration with historians, city officials, community representatives, and planners to make a final assessment as to their preservation.
- Complete restoration of wetlands.
EXISTING AND PHASE 1

EXISTING CONDITIONS: POST-KATRINA (2008)

144,730 people live on 35.16 square miles of low-elevation area. The population density of New Orleans is 4,147 people / square mile.

There are 23,887 blighted and abandoned properties that can be restored or reclaimed for wetlands restoration.

DATA FOR 2008

327,000 people total
80 sq miles urban area
9 sq miles water
104,400 people (32% of the population) live on high ground
144,730 people (44% of the population) remain on 35.16 sq miles of low ground
0 people (0% of the population) shift
0 sq miles (0% of land) reclaimed for wetlands
Urban area shrinks by 0%
Population density: 4,147

PHASE 1:

VACATING THE LOW(EST) GROUND (2008–15)

34,274 people from 14.47 square miles of low-elevation area will shift to higher ground. The population density will be 5,086 people / square mile.

DATA FOR 2015

215,674 people (66% of the population) live on high ground
110,456 people (34% of the population) remain on low ground
34,274 people (10% of the population) shift
14.47 sq miles (16% of land) reclaimed for wetlands
Urban area shrinks by
64.6 sq miles (15%)
62% of the total area is urban
Population density: 5,086
New Orleans sinks 5.4"
PHASE 2: VACATING THE LOW(ER) GROUND (2015–21)

63,293 people from 14.19 square miles of low-elevation area will shift to higher ground. The population density will be 6,317 people / square mile.

New Orleans sinks 4.2 inches. 9,095 blighted and abandoned properties will be restored or reclaimed for wetlands restoration.

- Shrinking of footprint: 56%
- Growth of wetlands: 16%
- Shifting population: 15%
- Spread of water: 2%

DATA FOR 2021

281,960 people (86% of the population)
Live on High Ground
47,162 people (14% of the population)
Remain on Low Ground
63,293 people (19% of the population)
Shift
14.19 sq. miles (15% of land)
Reclaimed for wetlands
Cumulatively, 50.50 sq. miles (56%) of urban area shrink
Urban area shrinks by 5% this phase
46% of the total area is urban
Population density: 6,514.04
New Orleans sinks 4.2"
9,095 blighted and abandoned properties are reclaimed

PHASE 3: DENSIFYING THE HIGH GROUND (2021–50)

47,162 people from 6.32 square miles of low-elevation area will shift to higher ground. The population density will be 6,923 people / square mile.

New Orleans sinks 20.3 inches. 49,962 blighted and abandoned properties will be restored or reclaimed for wetlands restoration.

- Shrinking of footprint: 44%
- Growth of wetlands: 16%
- Shifting population: 14%
- Spread of water: 5%

DATA FOR 2050

306,000 people (93% of the population)
Live on High Ground
233,138 people (73% of the population)
Remain on Low Ground
47,162 people (14% of the population)
Shift
6.32 sq. miles (2% of land)
Reclaimed for wetlands
Urban area shrinks by 44% cumulatively, by 5% this phase
Population density: 6,923
New Orleans sinks 20.3"
49,962 blighted and abandoned properties will be restored.
A SHIFTING EDGE, A SHRINKING CITY:

“The costs presently being discussed in the news media for upgrading the flood-control system of the city to withstand a Category 5 storm exceed $50B. And even then, the statistical likelihood of failure (by being overwhelmed by a large storm) is far higher than in similar projects in the Netherlands.” Rebuilding post-Katrina: “Building Category 5 protection here, however, is an astronomically expensive and technically complex proposition. It would involve far more than just higher levees; there would have to be extensive changes to the city’s system of drainage canals and pumps, environmental restoration on a vast scale to replenish buffering wetlands and barrier islands, and even sea gates far out of town near the Gulf of Mexico. The cost estimates are still fuzzy, but the work would easily cost more than $32 billion, state officials say, and could take decades to complete.”

A COST ANALYSIS

CUMULATIVE DATA

<table>
<thead>
<tr>
<th></th>
<th>PEOPLE</th>
<th>(%) OF THE POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVE ON HIGH GROUND</td>
<td>306,000</td>
<td>93%</td>
</tr>
<tr>
<td>REMAIN ON LOW GROUND</td>
<td>23,130</td>
<td>7%</td>
</tr>
<tr>
<td>SHIF</td>
<td>121,400</td>
<td>37%</td>
</tr>
<tr>
<td>REMAIN IN LOW GROUND</td>
<td>121,400</td>
<td>37%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>550,530</td>
<td>100%</td>
</tr>
</tbody>
</table>

RECLAIMED FOR WETLANDS URBAN AREA SHIRTS BY

<table>
<thead>
<tr>
<th></th>
<th>MILL</th>
<th>(%) OF URBAN AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>URBAN AREA SHIRTS BY 5 MILL</td>
<td>35.76</td>
<td>41%</td>
</tr>
<tr>
<td>URBAN AREA SHIRTS BY 10 MILL</td>
<td>44.20</td>
<td>51%</td>
</tr>
</tbody>
</table>

URBAN AREA NOW EQUALS

68% OF THE TOTAL AREA

POPULATION DENSITY: 6,923

(Seattle: 6,000; Minneapolis: 6,494; Los Angeles: 7,972)

NEW ORLEANS SINGLES 80%

71,675 BLIGHTED AND ABANDONED PROPERTIES ARE RECLAIMED

NUMBER OF HOUSEHOLDS / SQ MILE

257 ON LOW GROUND

247 IN THE SPARSELY INHABITED DISTRICTS

TWO STRATEGIES TO REBUILD

WHAT WILL LIKELY HAPPEN:

FLOOD CONTROL RECONSTRUCTION COST: $30 BILLION

+ INFRASTRUCTURE COST: $14 BILLION

TOTAL COST: $44 BILLION

- MONEY ALREADY SPENT: $2 BILLION

REMAINING COST: $22 BILLION

OUR PROPOSAL:

TOTAL UNITS: 105,000

TOTAL REHAB VALUE: $23.7 BILLION

+ WETLANDS RESTORATION: $4.6 BILLION

+ NEW HOUSING SUBSIDY: $5.0 BILLION

TOTAL COST: $33.3 BILLION

$39 BILLION

$23.7 BILLION

It is cheaper for New Orleans to shrink to three-quarters of its size and intensify ($23.7 billion), compared with what will most likely happen: the reconstruction of the flood-control systems ($39 billion).
New Orleans is a city that uncomfortably occupies the edge. Situated on the blurred and fluctuating border between land and water, the city is ever negotiating its built and natural environment.

A HOUSE DESIGNED FOR THE EDGE

Building on the analysis of its current conditions, our proposed urbscape for New Orleans shifts the city’s density inward and then uses its edge as a sustainable extension of the urban condition.
CONCLUSION

BRIDGING THE HARD BUILT ENVIRONMENT OF NEW ORLEANS AND THE SOFT UMBUILT ENVIRONMENT, THE CITY NURSLES SUTURE, SMALL FLOATABLE, SELF-SUSTAINING HOUSES OFFER A NEW WAY OF OCCUPYING THE LAND AND REPOSITIONING NEW ORLEANS AS A CITY AT HOME ON THE EDGE.